培特教育通过对知识原理的讲解剖析解决规律、理论观念及逻辑思想等问题而采取的如启发式、发现式、注入式等教学方法,帮助学生清晰导入知识主体,以便在学习和实践中进行更好的理解和运用。
【合肥培特中小学教育】◆24小时咨询热线:400-168-8684 QQ:835771336◆培特教育专注于,初中数学,培特教育被评为全国十大知名学校,荣膺搜狐网“年度十大教育品牌集团”,中国企业21“未来之星”教育机构。为中国民办教育创新做出巨大贡献,2005年9月受到教育部部长和陈香梅科教文奖的表彰。2007年成为北京英语水平考试BETS指定考点和培训中心。。在线预约可享免费试听课程,更多优惠请电话咨询在线值班老师!!!
培特教育不仅汇聚了顶尖教学团队和管理团队,更有先进的教学设施充实教学内容,帮助学生更好地进行知识点的记忆和理解,通过演示或实验等方法达到从理论理解到实践证明的质变。
初一数学
适合辅导人群:初一学生
辅导时间:周一至周日(具体辅导时间请致电了解
课程介绍:
初一数学是承接小学和中考的过渡时期。
重点学习有理数、整式、一元一次方程、线段与角等知识点;
掌握相关概念性质、定理运用、计算公式及法则;
引导学生在解题过程中发散思维的运用,掌握常规解题方法及技巧。
授课周期:
课程时间灵活,可根据学生实际情况确定上课时间。周期可结合学生自身学习状况、亟待解决的问题轻重缓急、教师的建议等其他因素,进行安排调整,力求在最有效的时间内,实现成绩的最大幅度提升。
适合对象:
【初中一年级学生】基础知识掌握疏通;成绩亟待突破提升;查漏补缺前后衔接;高分冲刺优中拔优;掌握良好学习方法
教学特色:
·1对1教学个性化方案
根据学生的需求、学习现状和目标,组合知识模块,挑选难度合适的题目,制定个性化的教学方案及讲义,执行一个学生,一套教学方案,对症下药,击破瓶颈。
·时间地点自由灵活
随报随上,上课时间自由灵活。家长可根据实际情况选择最佳上课时间及地点。随时随地给您最好的辅导服务。
·提高学生学习的积极性
弥补了课堂教学不足,解决了学生因赶不上学校学习进度丧失学习积极性的问题;一对一教学,给学生定制属于自己的学习计划,迅速提升成绩;突出学生的主体、个体地位,将学习进程细化到学生学习成长的每一个细节。
【学习方法】初二数学解题技巧及方法
我们常常会看到这种情况;有些学生同学经常埋头苦做题,但解题的效率却不高,花了大量的时间,解出的题目却很少,还有很多只解了一半的题目,多数原因是因为他们没有掌握解题的方法,不知该从何下手。如果你的解题速度提高了,你也会多花点时间在自己的薄弱学科上。
那么,究竟怎样才能提高解题速度呢?
一、熟悉习题中所涉及的内容,包括定义、公式、定理和规则。
解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。
二、熟悉习题中所涉及到的以前学过的知识,以及与其他学科相关的知识。
有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。我们应弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。
三、先易后难,逐步增加习题的难度。
人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。
四、认真、仔细地审题。
对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。
五、学会画图。
画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
初三数学暑假班开课时间是什么时候 暑期一对一辅导班在哪
考试的时候常有同学感到考试时间太过紧迫,往往试卷没有来得及做完就收试卷了,特别是数学,数学不仅仅题海量大,而且错综复杂,什么类型的题目都有,如何提高数学解题速度?
那么,究竟怎样才能提高解题速度呢?
首先,应十分熟悉习题中所涉及的内容,做到概念清晰,对定义、公式、定理和规则非常熟悉。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
第二,还要熟悉习题中所涉及到的以前学过的知识和与其他学科相关的知识。例如,有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是数学题中要用到的一个物理概念,而我们对此已不是十分清晰了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。
第三,应先易后难,逐步增加习题的难度。人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。一个人的能力也是通过锻炼逐步增长起来的。若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。
第四,学会画图。画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
初中数学几何如何添加辅助线 暑期一对一辅导班带你走进几何
在初中数学学习中,对于大部分学生来说几何部分的知识点是最难的部分,在几何中更难的也就是作辅助线的问题,小编整理了一些做辅助线的方法,快快学起来吧!
添辅助线有二种情况:
1
按定义添辅助线:
如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2
按基本图形添辅助线:
每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下:
(1)平行线是个基本图形:
当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线
(2)等腰三角形是个简单的基本图形:
当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:
出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形:
出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形:
几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:
全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线
(7)相似三角形:
相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。
(8)特殊角直角三角形:
当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明
(9)半圆上的圆周角:
出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形。