环球教育通过对知识原理的讲解剖析解决规律、理论观念及逻辑思想等问题而采取的如启发式、发现式、注入式等教学方法,帮助学生清晰导入知识主体,以便在学习和实践中进行更好的理解和运用。
【合肥环球教育】◆24小时咨询热线:400-168-8684 QQ:835771336◆环球教育专注于,初中数学,环球教育被评为全国十大知名学校,荣膺搜狐网“年度十大教育品牌集团”,中国企业21“未来之星”教育机构。为中国民办教育创新做出巨大贡献,2005年9月受到教育部部长和陈香梅科教文奖的表彰。2007年成为北京英语水平考试BETS指定考点和培训中心。。在线预约可享免费试听课程,更多优惠请电话咨询在线值班老师!!!
环球教育不仅汇聚了顶尖教学团队和管理团队,更有先进的教学设施充实教学内容,帮助学生更好地进行知识点的记忆和理解,通过演示或实验等方法达到从理论理解到实践证明的质变。
初一数学与小学数学的衔接
初一数学的内容包含数、式、方程和不等式,这些内容与小学数学中的算术题、简易方程、算术应用题等知识有关,但初一数学内容比小学内容更为丰富,抽象,复杂;而小学学生的数学学习方法与中学生的学习习惯也不一致。
内容上的衔接
1.算术数与有理数
小学数学是在算术数中研究问题的,而中学数学一开始就有有理数,因此,从算术数过渡到有理数是一大转折,为此,须抓住以下几点:
(1)清楚具有相反意义的量,是引入负数的关键.
了解引入负数的必要性及负数的意义.例如,如何区别零上温度和零下温度这两个具有相反意义的量呢?
又如,珠穆朗玛峰的海拔高度和吐鲁番盆地的海拔高度是具有相反意义的量等等,多举一些例子,了解为了区别具有相反意义的量必须引入一种新的数——负数.
(2)逐步加深对有理数的认识
首先,清楚地认识到有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,对有理数的概念的理解,运算的掌握就简便多了.
其次,清楚有理数的分类与小学的算术数相比只是多了负整数和负分数.
(3)有理数的运算,其实是由两部分组成:小学学习过的运算加上中学学习过的“符号”确定,只要特别注意符号的确定,那么有理数的运算就不成为难点了.如:(-2)+(-4)先确定符号为“-”再把数字部分相加即可,
即(-2)+(-4)=-(2+4)=-6
2.数与代数式
从小学数学的特殊的、具体的数到中学的一般的、抽象的代数式,这是数学思维上的一次飞跃.
(1)用字母表示数的必要性
在小学学过的用字母表示数的例子,如:加法交换律a+b=b+a;乘法交换律ab=ba及一些公式如速度公式v=s/t.正方形周长、面积公式L=4a,S=a2等,说明由字母表示数能简明、扼要地表达数量之间的关系.可以更方便地研究和解决问题.
(2)加深对字母a的认识
许多同学由于对字母a表示数的意义理解不透,经常错误地认为-a一定是负数,因此,要正确理解a的含义,知道a可能是负数,而-a不一定是负数等问题.
首先让学生弄清楚符号“-”的三种作用.①运算符号,如5-3表示5减3,2-4表示2减4;②性质符号,如-1表示负1,5+(-3)表示5加上负3;③在某个数前面加上“-”号,表示该数的相反数,如-3表示3的相反数,-(-3)表示-3的相反数,-a表示a的相反数.
然后再说明a表示有理数,可以是正数,可以是负数,亦可以是零.即包括符号和数字,这样,学生才能真正理解a,-a所包含的意义.
(3)加强数学语言的训练及列代数式的训练
如:a是正数表示为a>0,a是负数表示为a< 0,某数a的2倍表示为2a等 .
3.算术解法与代数解法
在小学,解应用题采用算术解法,而中学需用代数解法(列方程).算术解法是把未知量放在特殊地位,设法通过已知量求出未知量;而代数解法是把所求的量与已知量放在平等的地位,找出各量之间的等量关系,建立方程而求出未知量.另外,算术解法较强调套类型,而代数解法则重视灵活运用知识,培养分析问题和解决问题的能力,这是思维方法上的一大转折.但学生开始往往习惯于用算术解法,而对用代数解法不适应,不知道如何找相等关系.要明白有些问题用算术解法是不方使的,最好用代数解法,只要找出相等关系,用等式表示出来就列出了方程,再利用解方程的方法,就可以求出未知数的值.
初一《代数》第一章“代数初步知识”是以小学数学中的代数知识为基础的.从用字母表示数一直到简易方程,在小学高年级数学课中占有相当大的比重,是对小学数学中的代数知识的比较系统的归纳与复习,但本章内容又是从初中代数学习的客观需要出发的,不是小学知识的简单重复.
进入中学后,需逐步发展抽象思维能力.但初一新生在小学听惯了详尽、细致、形象的讲解,如果刚一进入中学就遇到“急转弯”往往很不适应.
初一学生往往考虑问题较单纯,不善于进行全面深入的思考,对一个问题的认识,往往注意了这一面,忽视了另一面,只看到现象,看不到本质. 例如:往往误认为2a>a,理由很简单:2个a显然大于1个a,忽视了a包含的意义,a表示有理数,可以是正数,负数或零,从而造成了错误.
学习习惯与学习方法的建议
1.继续保持良好的学习方法和习惯
刚从小学升上初一,小学里的许多良好的学习方法和习惯应该继续保持.如:上课坐姿端正,答题踊跃,声音响亮,积极举手发言等.
2.指导科学的学习方法,培养良好的学习习惯
初一学生基于小学的学习习惯和方法,认为学数学就是做作业,多做练习,课本成了“习题集”.因此,在教学过程中,须逐步培养学生自学能力,指导学生预习、复习和小结,适当选读课外读物,培养兴趣,开阔视野.
由于小学阶段学习科目少,内容比较浅显易懂,而到了中学阶段,学习科目倍增,内容不断加深,因此,在初一的数学教学中必须注意中小学数学的衔接,顺利由小学数学过渡到中学数学。
初二数学
适合辅导人群:初二学生
辅导时间:周一至周日(具体辅导时间请致电了解)
教育优势
1、领先的教学理念 2、全程个性化服务流程 3、丰富的辅导内容
4、雄厚的师资力量 5、6对1服务模式 6、独特的教学特色
初三数学新课知识在考试中的地位 暑假辅导老师专业解答
学生问:初三数学新课知识在考试中的地位如何呢?
老师答:初三的数学知识在初中所学数学知识中的地位与作用是不同的。其中,作为研究数学的对象学习的知识有:一元二次方程、圆、统计和概率;从对平面几何进一步认识的角度学习的有:旋转;作为完善工具性知识学习的有:根式、相似形、解直角三角形;作为知识介绍性学习的有:二次函数。正是由于我们所学知识的要求和目的不同,与之相关联的考试要求必然有一些差异。
初三年级所学的数学知识中,作为研究对象学习的知识必然是考试的重点(只是圆的知识使用受到了一定的限制),而工具性知识的考查,因其学习要求的原因,必然有所涉及,而作为要求提升的知识是必考的对象,二次函数作为初中代数知识学习的最终章节也必然有所涉及。
学生问:对于这些知识,如果有漏掉、没学好的,应该怎么补救呢?
老师答:在初三所学的数学知识中,有些带有明显的特征,即操作性较强。这里所说的操作性是指,通过一定的解题程序或者一定的操作模式就可以实现解题目的。从同学们的角度看这些问题,就是进行计算或者画图就可以解决的问题。如果初三的知识需要查漏补缺的话,那么对知识的基本认识和理解是最需要进一步提高的,而减少模式化的训练是基本途径。
学生问:怎么判断自己是否把知识掌握好了呢?
老师答:如果学生们都认为自己学习得很好了,能解决一些基本问题了,那么不妨做一个简单的测试,而这种测试也是一种重要的学习方法。我们可以随意从代数或者几何知识中抽取一个知识,你能否把初中所学的所有的代数知识或者几何知识,以这个知识为出发点连接在一起,如果你能做这件事了,说明你基本学会了初中的知识;如果你在连接的过程中存在缺位的现象,那么所缺的知识一定是你不十分理解的知识,需要你自己补上这个缺口。
初中数学暑假补课班哪家好 教你考试怎样答题更好拿分
全科辅导:
小学1对1辅导:小学4年级-6年级所有科目辅导
初中1对1辅导:初中所有科目一对一辅导/中考一对一冲刺/中考全托
高中1对1辅导:高中所有科目一对一辅导/高考一对一冲刺/高考全托
出国培训1对1辅导:托福辅导/雅思辅导/SAT辅导
艺考生文化课1对1辅导
要想中考数学成绩拿高分,一定要掌握好数学函数知识,那么初中数学函数解题技巧有哪些?学生们要注重“类比”的思想和“数形结合”的思想,让同学们更好的理解数学函数知识。
1、注重“类比”思想
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法。初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此名师指出,采用类比的方法不但省时、省力,还有助于学生的理解和应用。
2、注重“数形结合”思想
数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的“数形结合”。函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。
3、注重自变量的取值范围
自变量的取值范围,是解函数问题的难点和考点。正确求出自变量取值范围,正确理解问题,并化归为解不等式或不等式组。这需要学生掌握函数的思想,不等式的实际应用,全面考虑取值的实际意义。
4、注重实际应用问题
学习函数的主要目的之一就是在复杂的实际生活中建立有效的函数模型,利用函数的知识解决问题。这也是新课标所倡导的学习,因此新教材大力倡导函数与实际的应用。
初中掌握数学解题方法和技巧很重要,同学们能够掌握函数的基本知识点,有效地形成“类比”和“数形结合”等数学思想,从而形成自己的在数学函数方面的解题方法和技巧。